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Two-Dimensional Separation Cascades

PHILLIP C. WANKAT

SCHOOL OF CHEMICAL ENGINEERING
PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA 47907

Abstract

The relationships between countercurrent fixed bed and two-dimensional
cascades are explored for continuous contact and for staged systems. With
moving feed and product ports, fixed beds will simulate countercurrent opera-
tion. Two-dimensional cascades will simulate countercurrent operation if
slanted feed and product lines are employed. The relationships are also ex-
tended to three-phase systems for one-, two-, and three-dimensional cascades.
Fixed bed systems simulating countercurrent systems are in commercial
operation. The two-dimensional cascade offers an alternative geometry for
obtaining the same result. This alternative may be attractive for some separa-
tions such as electrophoresis.

INTRODUCTION

The relationships between different types of separation cascades have
been sporadically studied since at least 1841 when the Shanks system for
simulating countercurrent motion was introduced in England (Z). Recent
interest has included industrial applications of simulating countercurrent
motion in fixed beds (2, 3), laboratory simulation of countercurrent motion
for gas chromatography (4) and for gel permeation chromatography (5),
and the mathematical relationship between unsteady one-dimensional
systems and steady-state two-dimensional cascades (6, 7). Hybrid systems
which simulate countercurrent development during feed and utilize
chromatographic development during the remainder of the cycle have also
been studied (8, 9). Morphological relations have also been employed as
one-dimension in a general scheme for classifying and developing separa-
tion method (10).

1599
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In this paper we will extend the existing analogies and develop the con-
ditions for which two-dimensional cascades produce the same separation
as countercurrent cascades. This will be done first for continuous-contact
systems and then for staged systems. Then the analogy will be extended to
three-phase separation systems, and possible ramifications of the analogy
will be discussed.

CONTINUOUS CONTACT SYSTEMS

The analogy between one-dimensional and two-dimensional cascades
has been mathematically delineated (7). This was done for the two-
dimensional case where there is vertical fluid flow through a packed
annulus and the annulus rotates. That analysis will be briefly repeated
here.

The usual form of the solute balance for adsorption or chromatography
in a packed column assumes plug flow and ignores radial gradients in
velocity, concentration, and temperature. This balance for nonreacting
systems is

de ac dq 0%
6—67+3052+(1 _8)’056—[_06—27=0 )]
The solute balance on the solid phase is
dq .
Pl = O3 = kyale — ¢) @

At equilibrium, the solid and fluid concentrations are related by an
equilibrium expression of the general form

q=q(T,¢c) 3)

These equations can be compared to the equations for steady-state

operation in a two-dimensional rotating annulus system. Radial gradients

are again assumed to be negligible, and the resulting solute balance in
cylindrical coordinates is

dc dc dq % 1 8%

8W%+£va—z‘+(l—s)psw%—D@—Dﬁw—O 4

The rotation of the annulus results in a solid body rotation of both

phases. The solute balance on the solid phase for the steady-state rotating

system is

0
(1 = pw 3] = kyale = <) )

The equilibrium expression is the same as Eq. (3).
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Comparison of Eq. (1) to Eq. (4) shows that there is an extra diffusional
term in the latter equation. Under conditions where diffusion is important,
the one- and two-dimensional systems are not analogous. However,
the diffusional terms can commonly be ignored, at least for a first approxi-
mation. Under the conditions of negligible diffusion and dispersion, there
is a term-by-term correspondence between Eqs. (1) and (4), and (2) and (5).
If the simple transformation

t - Ojw (6)

is made, then Egs. (1) and (2), are transformed into Egs. (4) and (5),
respectively, for the case with negligible diffusion. As long as ¢ is not
a function of 7 or 8, this transformation is valid regardless of the equi-
librium relationship, Eq. (3), which is used. Equation (3) is unaffected by
the transformation.

In order for the systems to be analogous, the boundary conditions must
also transform under Eq. (6). The necessary boundary conditions for a
two-dimensional system to be equivalent to a countercurrent system will
be explored shortly.

Equation (1) was written for a fixed bed. However, the equation will
also be valid (with appropriate changes in variables) if countercurrent
operation is used and the reference frame moves with the solid. To
transform to a fixed (z’, ¢') reference frame, let

z' =2z — vt —nL
t =1, n=201,2,..,
0<z <L @)

where z’ is positive in the direction of fluid flow and the solid flows in the
negative z' direction with velocity v, (v, > 0). Utilizing the chain rule,
Eq. (1) becomes

dc  Oc oc  p(1 — 3)|: _0q @_] _o

“untatiatT bz o

If we note that v; = v — v, is the fluid velocity in our new reference frame
and apply steady-state conditions,

@®)

D
D
)

4
t,

=0 ©

D
D

tl
Eq. (8) simplifies to
dc pl —¢) 0q
T =T S Uy (10)
This is exactly the equation which is derived for a steady state counter-
current process.
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This development shows that the correct countercurrent equations are
obtained if we first model the countercurrent system as a fixed bed with
a moving reference frame and then transform our reference frame. The
process can also be reversed. That is, a fixed bed process can simulate a
countercurrent process (2, 3) by using a transformation like Eq. (7) and
by utilizing boundary conditions which will also transform. Since the
development from Egs. (1) to (6) showed that fixed beds and two-
dimensional processes can give equivalent separations, it follows from
the sequence:

countercurrent — fixed bed — two-dimensional

that there is a two-dimensional arrangement which will give the same
separation as a countercurrent separator. What is required is an arrange-
ment which will give boundary conditions which transform properly.

To look at boundary conditions, consider the adsorption system shown
in Fig. 1(a) (2, 3). For a countercurrent apparatus separating Components
A and B using Desorbent D, the boundary conditions are

zZ =0, gp = 0 (or small specified value)

z' = ZB/! Cq = CqB—Prod

2=z, €p = CB4—Prod

z' =1L, ¢, = 0 (or small specified value) an

Also the inlet concentrations are set:

L

=A+D 24

A+8B 2F

solidﬂ fluid
B+D 2g fluid
recycle
I streams
] ‘L - D 20

Q b

FIG. 1(a). Countercurrent cascade utilizing desorbent (2). (b) Equivalent
two-dimensional cascade.
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’

z' =0, CIN = Cp

’

z' = zf, CiN = CF (12)

To obtain the same separation in a fixed bed, we can move the locations
of the inlet and outlet ports upward at a switching velocity v, (2, 3). If
the fluid velocity is v, the fluid velocity relative to the ports is vy = v — v,
and the solids velocity relative to the ports is —v,. If we now have our
reference frame move with the ports, we have

z' =2z + vt — nL (13)

where n = integer 0, 1,2, ...,and 0 <z" < L, t" = ¢.

The boundary and inlet conditions written in Eqs. (11) and (12} are
valid if written in the z” coordinate system. Equations (13) are essentially
the same as Eqs. (7), and the fixed bed mass balances will transform over
to the appropriate countercurrent equations. Since the basic equations and
the boundary conditions both transform over, the two systems give equiva-
lent separations. This is utilized in the commercial simulated counter-
current process (2, 3).

The two-dimensional system shown in Fig. 1(b) will give separations
equivalent to the separations obtained in the countercurrent apparatus
shown in Fig. 1(a). In Fig. 1(b) the inlet and outlet streams are run along
slanted parallel lines in a manner similar to the slanted feed proposal for
two-dimensional separators (9). The boundary conditions for this two-
dimensional apparatus are

Z =0+ S0, qp small

z' =1zg+ S0 — nL, C4 = CAB-Prod

Z=z,+ 88 —nL, cp= Cpy-pra

zZ =L+ S6—nL, ¢, small (14)

where S is the slope of the feed and withdrawal lines, 0 < 8 < 360°, and
nis 0 or 1 as required to make 0 < z' < L. The inlet conditions are set:
zZ =0°+ S0, N = Cp
z'=zp 4+ SO0 — nL, N = CF (15)
We will now make the transformation in Eq. (6), ¢ = 8/w, and the
transformation
" =27 — (Sw)t — nL (16)
which is the same as Eq. (13) with
= Sw {17

Us
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This transformation converts the boundary and inlet conditions in Egs.
(14) and (15) to the countercurrent boundary conditions in Eqgs. (11) and
(12). The solute mass balance, Eq. (4), will first be transformed to the
mass balance for a fixed bed, Eq. (1), assuming that dispersion and diffu-
sion can be neglected. The second transformation, along with the steady-
state requirements dg/dt = dc¢/dt = 0, converts this to

) [~ 0

o =2t as)
which is the equation for a steady-state countercurrent system. Since both
boundary conditions and the solute mass balance transform into the
countercurrent equations, the steady-state, two-dimensional system shown
in Fig. 1(b) develops the same separation as a countercurrent process.
This analogy is subject to the restriction that dispersion and diffusion are
negligible, and refers to the (z”, 1) coordinate system. This is also true in the
(2", 0) coordinate system if z” is defined as

2=z — S0 —nL (19)

Another way of saying this is if we use the same values of z,’, zy', z//, L,
and vg, and force Eq. (17) to be satisfied, then the apparatus in Fig. 1(b)
(assuming it could be built and operated) will give the same separation
(same product concentrations) as the countercurrent system shown in Fig.
I(a). The argument presented is not restricted to fluid-solid adsorption,
and can be easily extended to other two-phase systems. Also, the argument
can be extended to systems with reflux. The generalized definition of reflux
is to withdraw one phase, change it to the other phase, and return part of
the stream at the same location. This is hard to conceive of in an adsorp-
tion system. If the two-dimensional system were distillation with the
fluid rotating, the reflux would consist of withdrawing upward flowing
vapor, condensing the vapor, and returning part of it to the separator.
The only difference between this reflux and countercurrent reflux is that
now the refluxed liquid flows horizontally instead of downward.

STAGED SYSTEMS

Two-dimensional staged systems have been studied for continuous
multicomponent separations and two-dimensional developments (see
Ref. 6 for a review). These two-dimensional staged systems can also
produce the same separation as a countercurrent cascade if the feed and
product lines are arranged on slanted lines. This is illustrated in Fig. 2
for an extraction system.

Before writing the mass balances for this system, we need to consider the
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r—= T

6

ols

F1G. 2A. Staged countercurrent extraction cascade.

symmetry of the cascade shown in Fig. 2B. At steady-state all stages labeled
1 will have the same concentrations (xy is constant) and yp and x, will be
the same for all stages labeled 1. This is also true for all stages labeled
2, 3, etc. This occurs since all stages labeled 1 have exactly the same
environment. This property that all stages on a given diagonal have the
same concentration is crucial in developing the mass balances.

If we write a mass balance for one of the solutes around Stage i and
solve for y; we obtain

L L
Vi = 'I'/xiﬂ + Vi-1 — 'I7xi (20)

This equation is the same equation as one obtains for a countercurrent
cascade with y; and x;,, being the passing streams and y,_, being input
from the stage below. Usually the mass balances are written around the
top or bottom of the column. For the two-dimensional system this is
illustrated in Fig. 2A for the specific case where the material balance
envelope is drawn from Stage 3 around the top (Stage 6) of the column.
The material balance is drawn as if the stages in Fig. 2 repeat themselves
indefinitely. The recycle streams are equivalent to repeating the stages.
When the stages are continued, the material balance envelopes A-4, B-B
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FiG. 2B. Equivalent two-dimensional staged cascade.

and C-C would be connected. The material balance envelope can be
closed by going from C to A on the bottom row, from B to C on the
right-hand column, and from A around the upper left-hand corner to B.
Adding these two regions, the mass balance is

N

N
V5y5 + V4y4 + V3y3 + .21 L3X3 + Z PyP
N 7= J

=1
N N

=Vsys + Vaya + Viys + '21 Fxp + .21 Vay, 2D
J= J=

where the summations sum terms on each diagonal. The recycle streams
cancel and each summation becomes & times the term inside the sum
& (L;X)) = NLxx,). Upon rearrangement, Eq. (21) becomes

I, P F
y = sz + Zyp - 74xF (22)
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If the flow rates are constant and F = L and P = V, then Eq. (22) when
generalized is

L F
Yier = 3% + yp — 7XF (23)

Equation (23) will also be obtained if a mass balance is written for the
countercurrent system shown in Fig. 2A.

Since the mass balances are the same, the cascades shown in Figs. 2A
and 2B will produce the same separation. Graphical, analytical, and
numerical methods of solving the countercurrent equations (/) can be
applied to the two-dimensional cascade shown in Fig. 2B. Usually the
stages will be treated as being equilibrium stages.

The two-dimensional system with slanted feed and product lines can
easily be extended to more complex columns with or without reflux. The
two-dimensional cascades are restricted in that they must have the feed
and product lines slanted at a 45° angle and the cascades must be square.
If a countercurrent cascade required 10 stages, a 10 x 10 two-dimensional
cascade or 100 stages would be required. However, for equal size stages
the two-dimensional cascade has a capacity 10 times that of the counter-
current cascade. Thus the capacity/stage is the same for the countercurrent
and the two-dimensional cascades.

THREE-PHASE STAGED SYSTEMS

Three-phase separations have not been extensively studied, but they do
occur, Examples are distillation of organics when water is present, slurry
adsorption, and liquid membrane separators. A countercurrent system
with two of the phases moving cocurrently is usually employed. This is
illustrated in Fig. 3A. The mass balance for Stage i is

W, L, Vi_ W, L,
Yi = V:12i+1+7:1xi+1 +"7i‘1}’i—1"17;zi—f/‘xi 9

The balance around the bottom of the column is

4 L L w
Vi = Zien + Rt i O 72 i 721 (25)

where constant flow rates have been assumed. In limiting cases, solutions
for the countercurrent three-phase separators are easily developed (12).

The same result can be obtained in the two-dimensional cascade shown
in Fig. 3B where slanted feed and product lines are used to make every
stage on Diagonal i/ the same. Then the mass balance around Stage i is
given by Eq. (24). If the mass balance is done around the stages where L
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W,

FiG. 3A. Staged ‘“‘countercurrent” cascades for three-phase systems: One-
dimensional.

and W exit the cascade and the procedure used in Egs. (21) to (23) is
followed, Eq. (25) results. Thus the cascades shown in Figs. 3A and 3B
give the same results,

Three-phase systems can also be operated in a three-dimensional cascade
of stages (/1) as shown in Fig. 3C. The three-dimensional cascade can give
the same separation as a countercurrent cascade if feed is input and
product streams are withdrawn in parallel planes. Planes parallel to the
plane through Stages A-B-~C or through Stages A-B-D can be used for
the feed and product planes. The stages in Fig. 3C are labeled for the case
where the 4-B-D planes are used. With all Stages i/ being the same,
the mass balance around Stage i (either A, B, or D) gives Eq. (24), and
a balance around stages with £ and W exiting the cascade will give Eq. (25)
after suitable manipulation.
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FiG. 3B. Two-dimensional.
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Fic. 3C. Three-dimensional.

More complex three-phase cascades with or without reflux can be
employed in the three cascade types shown in Fig. 3. An analogy between
one-, two-, and three-dimensional systems also exists when continuous
contact systems are considered. The analysis considered in the first part
of this paper can be extended to the three-phase systems.
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DISCUSSION

The energy balance has not yet been considered. If the energy balance
undergoes the transformation in Eq. (6), the appropriate two-dimensional
energy balance will transform if diffusion is negligible. The boundary
conditions will also transform appropriately.

Practical use of these techniques may be difficult. However, there is
some incentive to do this in adsorption and chromatography where
countercurrent flow is difficult to obtain. The two-dimensional process
offers an alternative to simulated countercurrent operation. The analogy
might also be useful in electrophoresis where two-dimensional processes
are routinely used but countercurrent flow is difficult. The use of slanted
feed and product lines with recycle would give an electrophoretic separa-
tion equivalent to a countercurrent separation. However, the separation
would now be limited to binary separations.

A steady two-dimensional separator can develop the same multicom-
ponent separations as a one-dimensional, time-dependent chromatograph
(6, 7). When parallel feed and product lines are employed, this ability is
lost, but the binary separation which is achieved is improved. As noted
previously, the throughput per cross-sectional area will be the same as
for a countercurrent separator at the same L and V (flooding may be
less of a problem). When one goes from a fixed bed, time-dependent
column (e.g., chromatograph) to a countercurrent flow, steady-state
system, one also loses the ability to fractionate multicomponent mixtures
but obtains a better, more efficient binary separation. Thus the advantages
and disadvantages of “countercurrent” type operation are the same in
both cases. Two-dimensional separators offer an alternative geometry for
operating cascades.

One interesting possibility for cascades which has not been extensively
explored is hybrid cascades which have both ‘*‘countercurrent” and
‘“‘chromatographic” behavior. In a two-dimensional system slanted feed
and slanted product lines would be employed, but this would be discontin-
uous. By proper location of these ports, multicomponent separations
could be obtained but some of the efficiency of countercurrent operation
would be retained (see Ref. 9 for the slanted feed line argument with a
constant product location).

The corresponding simulated countercurrent system would utilize mov-
ing feed and withdrawal ports for part of a cycle and chromatographic
development (no feed, solvent only) during the remainder of the cycle
(see Ref. 8 for the moving feed point argument). Feed and withdrawal
ports can move at different velocities and out-of-phase. In a counter-
current system the downward flow would be stopped when chromato-
graphic development was desired.



13:52 25 January 2011

Downl oaded At:

COUNTERCURRENT AND TWO-DIMENSIONAL SEPARATIONS tell

The purpose of the hybrid processes is to obtain multicomponent separa-
tion in a single cascade but with higher efficiency than is obtainable with
the usual elution chromatography. Partial use of countercurrent operation
should make this possible.

SUMMARY

Two-dimensional cascades can produce the same separation as counter-
current cascades if parallel, slanted feed and product withdrawal lines are
used. This is true for both continuous contact and staged systems. For
three-phase systems the analogy can also be extended to three-dimensional
cascades with feed and product withdrawal planes.
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SYMBOLS

interfacial area, cm?/cm?

concentration of solute in fluid, mol/cm3
concentration at equilibrium, mol/cm?
diffusion coefficient, cm?/s

feed rate, mol/s

mass transfer coefficient, 1/s-cm?

column length, cm

liquid flow rate, mol/s

integer 0, 1, 2, 3, ...

product flow rate, mol/s

solute concentration on solid, mol/g

radial coordinate, cm

slope of feed and withdrawal lines, cm/radian
time, s

temperature, °C or °K

velocity of fluid relative to solid, cm/s

flow rate of fluid phase, mol/s

fluid velocity relative to fixed reference frame, cm/s
port velocity or solid velocity relative to fixed reference
frame, cmy/s

angular velocity, radian/s

flow rate of third phase, mol/s

X
g "jbqohh

U~ vy M

‘N
<
- Ne Ny

<
)

=
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X Vi 2 concentration in a fluid phase leaving Stage i, mol/cm?®

z,z', 2" axial coordinate in reference frame moving with solid,
stationary reference frame, and reference frame moving with
ports, respectively, cm

Greek

7 angular coordinate, radians
g porosity
p,  solid density, g/cm?

Subscripts

B components
D desorbent
F feed
P product
s solid
1 stage number
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