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An Analogy between Countercurrent and 
Two-Dimensional Separation Cascades 

PHILLIP C .  WANKAT 

SCHOOL OF CHEMICAL ENGINEERING 
PURDUE UNIVERSITY 
WEST LAFAYETTE, INDIANA 41901 

Abstract 

The relationships between countercurrent fixed bed and two-dimensional 
cascades are explored for continuous contact and for staged systems. With 
moving feed and product ports, fixed beds will simulate countercurrent opera- 
tion. Two-dimensional cascades will simulate countercurrent operation if 
slanted feed and product lines are employed. The relationships are also ex- 
tended to three-phase systems for one-, two-, and three-dimensional cascades. 
Fixed bed systems simulating countercurrent systems are in commercial 
operation. The two-dimensional cascade offers an alternative geometry for 
obtaining the same result. This alternative may be attractive for some separa- 
tions such as electrophoresis. 

INTRODUCTION 

The relationships between different types of separation cascades have 
been sporadically studied since at least 1841 when the Shanks system for 
simulating countercurrent motion was introduced in England (I). Recent 
interest has included industrial applications of simulating countercurrent 
motion in fixed beds (2 ,3 ) ,  laboratory simulation of countercurrent motion 
for gas chromatography (4) and for gel permeation chromatography (5), 
and the mathematical relationship between unsteady one-dimensional 
systems and steady-state two-dimensional cascades (6, 7). Hybrid systems 
which simulate countercurrent development during feed and utilize 
chromatographic development during the remainder of the cycle have also 
been studied (8,9). Morphological relations have also been employed as 
one-dimension in a general scheme for classifying and developing separa- 
tion method (10). 

I599 

Copyright 0 198 1 by Marcel Dekker, Inc. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



I600 WANKAT 

In this paper we will extend the existing analogies and develop the con- 
ditions for which two-dimensional cascades produce the same separation 
as countercurrent cascades. This will be done first for continuous-contact 
systems and then for staged systems. Then the analogy will be extended to 
three-phase separation systems, and possible ramifications of the analogy 
will be discussed. 

CONTINUOUS CONTACT SYSTEMS 

The analogy between one-dimensional and two-dimensional cascades 
has been mathematically delineated (7). This was done for the two- 
dimensional case where there is vertical fluid flow through a packed 
annulus and the annulus rotates. That analysis will be briefly repeated 
here. 

The usual form of the solute balance for adsorption or chromatography 
in a packed column assumes plug flow and ignores radial gradients in 
velocity, concentration, and temperature. This balance for nonreacting 
systems is 

ac ac aq a Z c  
&- + EU- + (1 - &)ps-  - D -  - 0 

at az at azz - 

The solute balance on the solid phase is 

(2) 

At equilibrium, the solid and fluid concentrations are related by an 
equilibrium expression of the general form 

a9 
at 

p,(l - &)- = k,a(c - cO)  

4 = 4(T,  cc> (3) 
These equations can be compared to the equations for steady-state 

operation in a two-dimensional rotating annulus system. Radial gradients 
are again assumed to be negligible, and the resulting solute balance in 
cylindrical coordinates is 

ac ac aq aZC 1 d 2 C  
EW-  + EU- + (1 - E)P,W- - - D- - - 0 (4) ao d z  ao aZ r 2  ao2 - 

The rotation of the annulus results in a solid body rotation of both 
phases. The solute balance on the solid phase for the steady-state rotating 
system is 

( 5 )  
a4 
ao (1 - E)P,W-- = k,a(c - cO)  

The equilibrium expression is the same as Eq. (3). 
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COUNTERCURRENT AND TWO-DIMENSIONAL SEPARATIONS 1601 

Comparison of Eq. (1) to Eq. (4) shows that there is an extra diffusional 
term in the latter equation. Under conditions where diffusion is important, 
the one- and two-dimensional systems are not analogous. However, 
the diffusional terms can commonly be ignored, at least for a first approxi- 
mation. Under the conditions of negligible diffusion and dispersion, there 
is a term-by-term correspondence between Eqs. (1) and (4), and (2) and (5 ) .  
If the simple transformation 

is made, then Eqs. (1) and (2), are transformed into Eqs. (4) and (5 ) ,  
respectively, for the case with negligible diffusion. As long as q is not 
a function of t or 8, this transformation is valid regardless of the equi- 
librium relationship, Eq. (3), which is used. Equation (3) is unaffected by 
the transformation. 

In order for the systems to be analogous, the boundary conditions must 
also transform under Eq. (6). The necessary boundary conditions for a 
two-dimensional system to be equivalent to a countercurrent system will 
be explored shortly. 

Equation (1) was written for a fixed bed. However, the equation will 
also be valid (with appropriate changes in variables) if countercurrent 
operation is used and the reference frame moves with the solid. To 
transform to a fixed (z ' ,  t ' )  reference frame, let 

t -, e lw (6) 

z' = z - v,t - nL 
t' = t ,  n = 0, 1,2, ..., 
O s z ' r L  (7) 

where z' is positive in the direction of fluid flow and the solid flows in the 
negative z' direction with velocity v, ( v ,  > 0). Utilizing the chain rule, 
Eq. (1) becomes 

ac PA1 E - "'[ - U s a z ,  +at, = 0 
aq aqi (8) 

ac ac 
- v s y  + -y + v ,  + aZ at aZ  

If we note that vF = v - v, is the fluid velocity in our new reference frame 
and apply steady-state conditions, 

Eq. (8) simplifies to 

(10) 
- ac PS(1 - 4 a4 
azi OF = E U s a z l  

This is exactly the equation which is derived for a steady state counter- 
current process. 
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This development shows that the correct countercurrent equations are 
obtained if we first model the countercurrent system as a fixed bed with 
a moving reference frame and then transform our reference frame. The 
process can also be reversed. That is, a fixed bed process can simulate a 
countercurrent process ( 2 , 3 )  by using a transformation like Eq. (7) and 
by utilizing boundary conditions which will also transform. Since the 
development from Eqs. (1) to (6) showed that fixed beds and two- 
dimensional processes can give equivalent separations, it follows from 
the sequence : 

countercurrent -+ fixed bed --+ two-dimensional 

that there is a two-dimensional arrangement which will give the same 
separation as a countercurrent separator. What is required is an arrange- 
ment which will give boundary conditions which transform properly. 

To look at boundary conditions, consider the adsorption system shown 
in Fig. l(a) ( 2 , 3 ) .  For a countercurrent apparatus separating Components 
A and B using Desorbent D,  the boundary conditions are 

z’ = 0,  qB = 0 (or small specified value) 
2’ = ZB’, 

z‘ = z*’, 
cA = CAB-Prod 

cB = CBA-Prod 

z’ = L, cA = 0 (or small specified value) 

Also the inlet concentrations are set : 

mlii 

0 b 

fluid 
recycle 
streoms 

FIG. l(a). Countercurrent cascade utilizing desorbent (2). (b) Equivalent 
two-dimensional cascade. 
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COUNTERCURRENT AND TWO-DIMENSIONAL SEPARATIONS I603 

zt = 0, = cD 

2) = ZF’, CIN = cF (12) 
To obtain the same separation in a fixed bed, we can move the locations 

of the inlet and outlet ports upward at a switching velocity v, (2,3). If 
the fluid velocity is u, the fluid velocity relative to the ports is vF = v - v, 
and the solids velocity relative to the ports is -0,. If we now have our 
reference frame move with the ports, we have 

Z” = z’ + v,t - nL (13) 

where n = integer 0, 1, 2, ..., and 0 I zN 5 L, t N  = t. 
The boundary and inlet conditions written in Eqs. (11) and (12) are 

valid if written in the Z” coordinate system. Equations (1 3) are essentially 
the same as Eqs. (7), and the fixed bed mass balances will transform over 
to the appropriate countercurrent equations. Since the basic equations and 
the boundary conditions both transform over, the two systems give equiva- 
lent separations. This is utilized in the commercial simulated counter- 
current process (2,3). 

The two-dimensional system shown in Fig. l(b) will give separations 
equivalent to the separations obtained in the countercurrent apparatus 
shown in Fig. l(a). In Fig. l(b) the inlet and outlet streams are run along 
slanted parallel lines in a manner similar to the slanted feed proposal for 
two-dimensional separators (9). The boundary conditions for this two- 
dimensional apparatus are 

z’ = o + se, 

z’ = z A + s8 - nL, 
z’ = L + SO - nL, cA small (14) 

q B  small 

z‘ = z B + so - nL, CA = CAB-Prod 

CB = CBA-Prod 

where S is the slope of the feed and withdrawal lines, 0 5 0 5 360°, and 
n is 0 or 1 as required to make 0 I z‘ 5 L. The inlet conditions are set: 

2’ = 00 + se, = cD 

z’ = z, + SO - nL, cIN = cF (1 5 )  

We will now make the transformation in Eq. (6) ,  t = e/w, and the 
transformation 

z” = z’ - (Sw) t  - nL (16) 

0, = sw (17) 

which is the same as Eq. (13) with 
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I604 WANKAT 

This transformation converts the boundary and inlet conditions in Eqs. 
(14) and (15) to the countercurrent boundary conditions in Eqs. (11) and 
(12). The solute mass balance, Eq. (4), will first be transformed to the 
mass balance for a fixed bed, Eq. (l), assuming that dispersion and diffu- 
sion can be neglected. The second transformation, along with the steady- 
state requirements aqldt = acldt = 0, converts this to 

which is the equation for a steady-state countercurrent system. Since both 
boundary conditions and the solute mass balance transform into the 
countercurrent equations, the steady-state, two-dimensional system shown 
in Fig. l(b) develops the same separation as a countercurrent process. 
This analogy is subject to the restriction that dispersion and diffusion are 
negligible, and refers to the (z”, r )  coordinate system. This is also true in the 
(z”,  0) coordinate system if z” is defined as 

z” = z’ - SB - nL (19) 
Another way of saying this is if we use the same values of zA’, zB’, zF‘, L, 
and uF,  and force Eq. (17) to be satisfied, then the apparatus in Fig. I(b) 
(assuming it could be built and operated) will give the same separation 
(same product concentrations) as the countercurrent system shown in Fig. 
1 (a). The argument presented is not restricted to fluid-solid adsorption, 
and can be easily extended to other two-phase systems. Also, the argument 
can be extended to systems with reflux. The generalized definition of reflux 
is to withdraw one phase, change it to the other phase, and return part of 
the stream at the same location. This is hard to conceive of in an adsorp- 
tion system. If the two-dimensional system were distillation with the 
fluid rotating, the reflux would consist of withdrawing upward flowing 
vapor, condensing the vapor. and returning part of it to the separator. 
The only difference between this reflux and countercurrent reflux is that 
now the refluxed liquid flows horizontally instead of downward. 

STAGED SYSTEMS 

Two-dimensional staged systems have been studied for continuous 
multicomponent separations and two-dimensional developments (see 
Ref. 6 for a review). These two-dimensional staged systems can also 
produce the same separation as a countercurrent cascade if the feed and 
product lines are arranged on slanted lines. This is illustrated in Fig. 2 
for an extraction system. 

Before writing the mass balances for this system, we need to consider the 
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COUNTERCURRENT AND TWO-DIMENSIONAL SEPARATIONS I605 

F 

FIG. 2A. Staged countercurrent extraction cascade. 

symmetry of the cascade shown in Fig. 2B. At steady-state all stages labeled 
1 will have the same concentrations (xF is constant) and y ,  and x1 will be 
the same for all stages labeled 1. This is also true for all stages labeled 
2, 3, etc. This occurs since all stages labeled 1 have exactly the same 
environment. This property that all stages on a given diagonal have the 
same concentration is crucial in developing the mass balances. 

If we write a mass balance for one of the solutes around Stage i and 
solve for y i  we obtain 

This equation is the same equation as one obtains for a countercurrent 
cascade with y i  and x i +  being the passing streams and yi- being input 
from the stage below. Usually the mass balances are written around the 
top or bottom of the column. For the two-dimensional system this is 
illustrated in Fig. 2A for the specific case where the material balance 
envelope is drawn from Stage 3 around the top (Stage 6) of the column. 
The material balance is drawn as if the stages in Fig. 2 repeat themselves 
indefinitely. The recycle streams are equivalent to repeating the stages. 
When the stages are continued, the material balance envelopes A-A, B-B 
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A 

FIG. 2B. Equivalent two-dimensional staged cascade. 

and C-C would be connected. The material balance envelope can be 
closed by going from C to A on the bottom row, from B to C on the 
right-hand column, and from A around the upper left-hand corner to B. 
Adding these two regions, the mass balance is 

N N 

V5Y5 + V4Y4 + V3Y3 + c L3x3 + c PYP 
% j = 1  j =  1 

where the summations sum terms on each diagonal. The recycle streams 
cancel and each summation becomes N times the term inside the sum 
(C (LJ,)  = NLixi ) .  Upon rearrangement, Eq. (21) becomes 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



COUNTERCURRENT AND TWO-DIMENSIONAL SEPARATIONS I607 

If the flow rates are constant and F = L and P = V,  then Eq. (22) when 
generalized is 

Equation (23) will also be obtained if a mass balance is written for the 
countercurrent system shown in Fig. 2A. 

Since the mass balances are the same, the cascades shown in Figs. 2A 
and 2B will produce the same separation. Graphical, analytical, and 
numerical methods of solving the countercurrent equations ( I )  can be 
applied to the two-dimensional cascade shown in Fig. 2B. Usually the 
stages will be treated as being equilibrium stages. 

The two-dimensional system with slanted feed and product lines can 
easily be extended to more complex columns with or without reflux. The 
two-dimensional cascades are restricted in that they must have the feed 
and product lines slanted at a 45" angle and the cascades must be square. 
If a countercurrent cascade required 10 stages, a 10 x 10 two-dimensional 
cascade or 100 stages would be required. However, for equal size stages 
the two-dimensional cascade has a capacity 10 times that of the counter- 
current cascade. Thus the capacity/stage is the same for the countercurrent 
and the two-dimensional cascades. 

THREE-PHASE STAGED SYSTEMS 

Three-phase separations have not been extensively studied, but they do 
occur. Examples are distillation of organics when water is present, slurry 
adsorption, and liquid membrane separators. A countercurrent system 
with two of the phases moving cocurrently is usually employed. This is 
illustrated in Fig. 3A. The mass balance for Stage i is 

The balance around the bottom of the column is 

where constant flow rates have been assumed. In limiting cases, solutions 
for the countercurrent three-phase separators are easily developed (12). 

The same result can be obtained in the two-dimensional cascade shown 
in Fig. 3B where slanted feed and product lines are used to make every 
stage on Diagonal i the same. Then the mass balance around Stage i is 
given by Eq. (24). If the mass balance is done around the stages where L 
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L v w  

i + l  

i - I  

.It4 
L V W  . . 

FIG. 3A. Staged “countercurrent” cascades for three-phase systems : One- 
dimensional. 

and W exit the cascade and the procedure used in Eqs. (21) to  (23) is 
followed, Eq. (25) results. Thus the cascades shown in Figs. 3A and 3B 
give the same results. 

Three-phase systems can also be operated in a three-dimensional cascade 
of stages (11) as shown in Fig. 3C. The three-dimensional cascade can give 
the same separation as a countercurrent cascade if feed is input and 
product streams are withdrawn in parallel planes. Planes parallel to the 
plane through Stages A-B-C or through Stages A-B-D can be used for 
the feed and product planes. The stages in Fig. 3C are labeled for the case 
where the A-B-D planes are used. With all Stages i being the same, 
the mass balance around Stage i (either A,  B, or D )  gives Eq. (24), and 
a balance around stages with Land Wexiting the cascade will give Eq. (25) 
after suitable manipulation. 
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i + 2  > i + l  __+ i +  

A 

FIG. 3C. Three-dimensional. 

* 

More complex three-phase cascades with or without reflux can be 
employed in the three cascade types shown in Fig. 3. An analogy between 
one-, two-, and three-dimensional systems also exists when continuous 
contact systems are considered. The analysis considered in the first part 
of this paper can be extended to the three-phase systems. 

i t 1  w >  i i - l  + 
W 

A b 
V L  

v V 
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DISCUSSION 

The energy balance has not yet been considered. If the energy balance 
undergoes the transformation in Eq. (6), the appropriate two-dimensional 
energy balance will transform if diffusion is negligible. The boundary 
conditions will also transform appropriately. 

Practical use of these techniques may be difficult. However, there is 
some incentive to do this in adsorption and chromatography where 
countercurrent flow is difficult to obtain. The two-dimensional process 
offers an alternative to simulated countercurrent operation. The analogy 
might also be useful in electrophoresis where two-dimensional processes 
are routinely used but countercurrent flow is difficult. The use of slanted 
feed and product lines with recycle would give an electrophoretic separa- 
tion equivalent to a countercurrent separation. However, the separation 
would now be limited to binary separations. 

A steady two-dimensional separator can develop the same multicom- 
ponent separations as a one-dimensional, time-dependent chromatograph 
(6, 7). When parallel feed and product lines are employed, this ability is 
lost, but the binary separation which is achieved is improved. As noted 
previously, the throughput per cross-sectional area will be the same as 
for a countercurrent separator at the same L and V (flooding may be 
less of a problem). When one goes from a fixed bed, time-dependent 
column (e.g., chromatograph) to a countercurrent flow, steady-state 
system, one also loses the ability to fractionate multicomponent mixtures 
but obtains a better, more efficient binary separation. Thus the advantages 
and disadvantages of “countercurrent” type operation are the same in 
both cases. Two-dimensional separators offer an alternative geometry for 
operating cascades. 

One interesting possibility for cascades which has not been extensively 
explored is hybrid cascades which have both “countercurrent” and 
“chromatographic” behavior. In a two-dimensional system slanted feed 
and slanted product lines would be employed, but this would be discontin- 
uous. By proper location of these ports, multicomponent separations 
could be obtained but some of the efficiency of countercurrent operation 
would be retained (see Ref. 9 for the slanted feed line argument with a 
constant product location). 

The corresponding simulated countercurrent system would utilize mov- 
ing feed and withdrawal ports for part of a cycle and chromatographic 
development (no feed, solvent only) during the remainder of the cycle 
(see Ref. 8 for the moving feed point argument). Feed and withdrawal 
ports can move at different velocities and out-of-phase. In a counter- 
current system the downward flow would be stopped when chromato- 
graphic development was desired. 
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COUNTERCURRENT AND TWO-DIMENSIONAL SEPARATIONS 161 I 

The purpose of the hybrid processes is to obtain multicomponent separa- 
tion in a single cascade but with higher efficiency than is obtainable with 
the usual elution chromatography. Partial use of countercurrent operation 
should make this possible. 

SUMMARY 

Two-dimensional cascades can produce the same separation as counter- 
current cascades if parallel, slanted feed and product withdrawal lines are 
used. This is true for both continuous contact and staged systems. For 
three-phase systems the analogy can also be extended to three-dimensional 
cascades with feed and product withdrawal planes. 
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SYMBOLS 

interfacial area, cm2/cm3 
concentration of solute in fluid, mol/cm3 
concentration at equilibrium, mol/cm3 
diffusion coefficient, cm'/s 
feed rate, mol/s 
mass transfer coefficient, l/s.cm2 
column length, cm 
liquid flow rate, mol/s 
integer 0, 1, 2, 3, ... 
product flow rate, mol/s 
solute concentration on solid, mol/g 
radial coordinate, cm 
slope of feed and withdrawal lines, cm/radian 
time, s 
temperature, "C or OK 
velocity of fluid relative to solid, cmjs 
flow rate of fluid phase, mol/s 
fluid velocity relative to fixed reference frame, cm/s 
port velocity or solid velocity relative to fixed reference 
frame, cm/s 
angular velocity, radian/s 
flow rate of third phase, mol/s 
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xi ,  yi ,  zi concentration in a fluid phase leaving Stage i, mol/cm3 
z ,  z’, Z” axial coordinate in reference frame moving with solid, 

stationary reference frame, and reference frame moving with 
ports, respectively, cm 

Greek 

0 angular coordinate, radians 
E porosity 

ps solid density, g/cm3 

Subscripts 

A,  B components 
D desorbent 
F feed 
P product 
s solid 

0, 1, 2, ..., i, i + 1 stage number 
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